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ABSTRACT: A new theoretical non-Newtonian viscosity model is developed by taking the fractional series expansion of Eyring’s shear-

ing strain rate. A broad range of experimental rheological data of various polymer melts including polyethylenes, polypropylene,

polystyrene, poly (methyl methacrylate), and polycarbonate are fitted well using the proposed model. From the model; zero shear,

constant shear-stress and constant shear-rate viscosities are derived as a linear function of viscosity related quantity, Yh, called

“thermo-occupancy function” and their coefficients are discussed in detail. The thermo-occupancy function is expressed in terms of

temperature and structural vacancies such as hole fraction computed from the Simha-Somcynsky Hole Theory (SS). In addition, the

derivative of the logarithm of viscosities with respect to the hole fraction, named as viscoholibility, is observed decreases with the

increasing hole fraction. VC 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014, 131, 40540.
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INTRODUCTION

For polymeric liquids, viscosity in terms of shear-rate, described

by the viscosity curves, is classified as Newtonian viscosity (linear

viscosity), g0, and non-Newtonian viscosity. The non-Newtonian

viscosity plays an important role in describing their characteristic

properties. Several practical and theoretical non-Newtonian vis-

cosity models exist in the literature. Two well-known models,

Cross and Carreau1,2 are widely used in correlating viscosity with

shear-rate. Hieber and Chiang1 fitted their shear viscosity data in

terms of generalized Cross/Carreau model for the shear-rate

dependence. They showed that the Cross model gives a better fit

than the Carreau model. Kadijk and Van Den Brule2 described

the viscosity at high shear-rates for PP, PS and ABS with the use

of the two-parameter generalized Cross/Carreau equation. While

they fitted the data excellently for PS and ABS, the fitting is rea-

sonable for PP. Sedlacek et al.3 used another multi-parameter

model, Carreau-Yasuda equation,3,4 involving exponential relation

of pressure and temperature, to fit their non-Newtonian viscosity

data. As an extension to these models, in this paper, we propose

a theoretical model for non-Newtonian viscosity by taking the

fractional Taylor expansion of the exponential product of Eyring’s

rate of shearing strain.5–8 Our proposed model works successfully

on both temperature and pressure dependent zero shear viscos-

ities and critical shear-stress parameters with a single fitting

parameter.

Another interesting approach is free volume dependency of viscosity

that has been a promising asset to describe the flow behavior of poly-

mer melts. In this regard, some correlations between free volume and

viscosity have been presented by several researchers. One of these is

given by well-known Doolittle’s viscosity-free volume relation.3,9,10

Moreover, as a modification of Doolittle’s free volume model,

Utracki11–13 related zero shear viscosity inversely with hole fraction

computed from the SS theory. However, extending it for more com-

plicated structures, Yahsi5,6,14 proposed a new theoretical derivation

for zero shear viscosity as a function of temperature and pressure

dependent hole fraction, h(T,P), computed from an equilibrium

property of the SS theory. He applied it successfully for some

branched hydrocarbons, their mixtures and polymers.6,15,16

Sorrentino and Pantani17 found a linear relationship between

the logarithm of zero shear viscosity and inverse of free volume

by using Doolittle’s equation while Sedlacek et al.3 modified

Utracki’s form of the hole fraction model to linearize zero shear

and constant shear-stress viscosities data. In this article, we

extend zero shear and constant shear-stress work mentioned

above to constant shear-rate viscosities as well. We also define

the derivative of the logarithm of viscosity at constant shear-

stress and constant shear-rate and observe them to decrease as

the whole fraction increases.

Hence, a non-Newtonian viscosity model that is a function of

the zero shear viscosity, g0, and the critical stress parameter, s,
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is established. The experimental rheological data at a wide

range of T-P values are fitted through this proposed model

and 2–3 folds less deviation is obtained than the Cross Model

at high pressures. Furthermore, by using the experimental PVT

data some relationships among PVTh values are stated both

with the SS Theory and with the obtained various Tait like

equations. The linear dependency of our derived viscosity

quantities (zero shear viscosity, constant stress viscosity, and

constant shear-rate viscosity) with hole fraction (h) and tem-

perature (T) dependent thermo-occupancy function (Yh) are

also presented. It is found that the derivative of the logarithms

of the viscosities with respect to h (viscoholibility) decreases

with h increases.

THEORIES

The SS-EOS Theory

Simha and Somcynsky (SS)18 developed an equation of state

(EOS) based on the lattice-hole model providing ~P5~P
~V ; ~T ; h ~V ; ~T

� �� �
derived from the configurational Helmholtz

energy:

~P ~V =~T 5 12Qð Þ21
1ð2y=~T Þðy ~V Þ22½1:011ðy ~V Þ22

21:2045� (1)

which is formulated in terms of volume, temperature, and pres-

sure in scaled forms, viz. ~V 5V=V �, ~T 5T=T� and ~P5P=P�.
For an s-mer, V � is defined by NAt�=m0, where NA is the Avo-

gadro’s number, m0 is the molar mass of a segment, and charac-

teristic molar volume t* of a segment given by the segmental

location r� of the potential minimum. T� equals to qze�=ck as a

balance between attraction and thermal energy contributed by

the external degrees of freedom (3c) where attractive interaction

parameter e* of a segment corresponds to the potential mini-

mum. Accordingly, P� is defined by the ratio between chain

attraction energy qze� and chain hard core volume st�, where qz

is the number of the first neighbor intermolecular pairs of the

s-mer (chain length of a polymer), viz., s z22ð Þ12 with the

coordination number z.

SS-EOS is defined in terms of occupied site fraction, y, to be

computable by minimization of Helmholtz energy of an ensem-

ble, @F=@yj~V ;~T ;c=s50:

ðs=3cÞ ðs21Þ=s1y21ln ð12yÞ½ �5ðQ21=3Þ=ð12QÞ

1ðy=6~T Þðy ~V Þ22
2:40923:033ðy ~V Þ22� � (2)

where Q5221=6yðy ~V Þ21=3
. The SS-EOS has been applied to low

and high-molecular-weight systems to describe their thermody-

namical properties and extended to interpret the non-

equilibrium properties, viz. viscoelasticity, physical aging etc.

The hole fraction has been also utilized to express a variety of

equilibrium and kinetic process such as viscosity,2,3,12,13,19 ionic

conductivity20 etc.

The non-Newtonian Viscosity Model

The Eyring’s rate of shearing strain was defined by the use of

the rate of a relative displacement of adjacent layers with for-

ward and backward terms per unit length between two succes-

sive layers denoted by k1 as

_c5
X

i

k cos hi

k1

� �
ki exp nir=kTð Þ 12exp 22nir=kTð Þð Þ (3)

where ni5k2k3k cos hi=2 and the term, nir, gives the work done

by the shear-stress, r, that is applied on the surface area k2k3

occupied by a segment, displaced by k cos hi=2 to the top of a

barrier (the half way to the next minimum potential) for the

ith segment. The jumping frequency, ki, is assumed to be similar

on the average for all available positions for each molecular seg-

ment and given by5–8,21

k
0
5j

kT

hp

exp
2Ea

kT

� �
(4)

where hp is the Planck’s constant, k is the Boltzman’s constant,

j is the transmission coefficient, and Ea is the activation energy.

The activation energy, given by the following expression

Ea5
1

2

12h

h
a
0
qzU (5)

is the necessary energy for a molecular segment to jump into a

hole in which a
0

is proportionality constant, qz is the number

of interchain nearest neighboring pairs, U is the interaction

potential energy between a pair of segments.

The series expansion of the last product in eq. (3) can be

approximated by keeping the non-vanishing term: 2nir=kT . On

the other hand, the first exponential product, exp nir=kTð Þ, in

the same equation needs a special handling in such a way that

its fractional Taylor expansion can be expanded about g0

(or _c ! 0)22

enir=kT jg0
5
X1
n50

ðnig0 _c=kTÞnq

C nq11ð Þ : (6)

where q is the order of the fractional derivative of the exponen-

tial function employed in the expansion given below23

dqeax

dxq
5aqeax : (7)

Keeping the terms up to 2q powers of shear-rate in the expan-

sion of eq. (6) and substituting eqs. (3–7) in the viscosity equa-

tion, defined as the ratio of shear-stress to shear-rate, the

following expression is obtained

g5
g0

11 h1

C q11ð Þ
g0 _c
s

� 	q
1 h2

C 2q11ð Þ
g0 _c
s

� 	2q
(8)

where C qð Þ is a gamma function, hn5 2
p

X
i
cos nq12hi; ðn51; 2Þ,

and s54RT=
ffiffiffi
6
p

t. Here the zero-shear viscosity16 defined as the zer-

oth order approximation of eq. (8) is g05g�eEa=kT . Substituting eq.

(5) in this expression and taking the logarithm of both sides we

obtain

ln g05ln g�1aYh;Yh5
12h

h

1

T
(9)

in which the parameters g* and a are given

g�5

ffiffiffi
2
p

NAhp

pjt
and a5a

0 qzU
2k

(10)

where t is the molar volume of a segment of a polymer. Here t
and U quantities are slowly varying functions comparing with
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viscosity so that they are kept in the coefficients of eq. (9).5,6,15

Here the quantity, Yh, is a ratio of a number of occupied sites to

unoccupied sites (holes) divided by the absolute temperature; it

can be interpreted as the number of occupied sites for each

empty site per unit temperature. Thus, Yh contributes to the cal-

culation of viscosity in two folds: First, it depends on the struc-

tural occupancy; second, it is inversely related to temperature

which is also correlated with vibrational energy. Because of such

importance of this contribution to our calculations, we would

name Yh as “thermo-occupancy function.”

Neglecting 2q power term in eq. (8) reduces to an equation

similar to the formula given by the Cross model as

g5
g0

11 h1

C q11ð Þ
g0 _c
s

� 	q : (11)

As having a great essence of viscosity-hole fraction behavior, the

derivative of eq. (9) with respect to h at constant T is defined

and coined a name “viscoholibility” (as a combination of vis-

cosity and hole fraction) is given as follows:16

@ ln g0

@h

����
T

52
a

h2T
(12)

In a similar manner, the derivative of logarithmic viscosity with

respect to h at constant shear-stress can be derived using eqs.

(3–5) with an assumption of U to be constant:

@ ln g
@h

����
r;T

52
@ ln _c
@h

����
r;T

ffi 2
a

h2T
(13)

Similar to eqs. (12) and (13) the derivative of logarithmic vis-

cosity at constant shear-rate can be predicted by

@ ln g
@h

����
_c;T

52
a

h2T
(14)

From eqs. (13) and (14), the viscosity at constant shear-stress

and constant shear-rate can be written similar to eq. (9):

ln gjr5ln g�1aYh and ln gj _c5ln g�1aYh: (15)

where g* and a in eqs. (13–15) change with constant shear-stress

and constant shear-rate. Here the expressions in eqs. (13) and (14)

will be called as “viscoholibility at constant shear-stress” and

“viscoholibility at constant shear-rate,” respectively.

CALCULATIONS

The Scaling Parameters of the SS Theory

We have studied PVT behavior of some commercially available

polymers such as high-density polyethylene (HDPE), low-

density polyethlylene (LDPE), linear low-density polyethylene

(LLDPE), polypropylene (PP), polystyrene (PS), poly(methyl

methacrylate) (PMMA), polycarbonate (PC). Their experimental

PVT and viscosity data were reported by Sedlacek et al.3,24 in

the temperature range 70–290�C and the pressure range 15–70

MPa with the increments of 5 MPa.

Using the PVT data of these polymers, the scaling parameters

P*, V*, T* and the structural flexibility parameter 3c/s with 3c

5s13 have been computed from eqs. (1) and (2).6,15 The

optimized s values correspond to an ideal chain case. The

scaling parameters P*, V*, T* are computed by superimposing

the experimental PVT data on the theoretical ~P ~V ~T surface.

To do this, first, the parameter c is assumed as an adjustable

parameter, and then the set of the experimental data is pro-

jected on the theory to get an equation in terms of V* and

T* including P*. Second, expanding each up to the first

power in V* and T*, N equations are obtained from the N

PVT data and solved for two unknowns V* and T* using the

Pseudo Inverse Matrix Technique. The best c values with the

scaling parameters P*, V*, T* are taken by the least mean per-

centage error in specific volume defined by

DV %ð Þ5100

N

X
i

jVi
exp 2Vi

calc j
Vi

exp
: (16)

The obtained parameters with the mean and maximum per-

centage error in specific volume are reported in Table I for the

polymers. The mean percentage deviation ranges from 0.028 to

0.077% (on the average: 0.054%) and the maximum percent-

age error is 0.45% for PS and less for the other polymers.

These parameters are ready to be used for the computational

hole fraction, then for the viscosity and their derivative

models.

To determine the PVT behavior of all the samples, the Tait

equation,18,25 a highly accurate approximation to the solution

of the coupled eqs. (1) and (2), is available at atmospheric pres-

sure in a scaled isobar as

Table I. Scaling Parameters Computed from eqs. (1) and (2) with Testing Temperature Ranges

Polymer
Temperature
range (�C)

1033m0

(kg) s
<-U/k>a

(K)
1033V*
(m3kg21) T* (K) P* (MPa) DV% Max DV%

LDPE 70–210 40.25 2037 502.4 1.1718 10494 617.6 0.029 0.12

LLDPE 70–210 40.61 1467 508.9 1.1752 10623 618.1 0.028 0.18

HDPE 90–230 33.27 2877 425.9 1.1834 8900 627.2 0.057 0.37

PMMA 130–270 37.46 2907 461.8 0.8364 9649 854.3 0.066 0.39

PC 120–290 42.73 402 467.8 0.8157 9715 778.3 0.069 0.42

PP 110–250 38.97 4911 432.5 1.1755 9042 547.4 0.054 0.31

PS 140–290 42.36 6657 472.7 0.9560 9881 676.6 0.077 0.45

a The values listed for <-U/k> differ within 60.7
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ln ~V 5a
0
01a

0
1
~T

3 2=

(17)

where a0
05 20.09504 and a1

05 22.992 in this work. We pro-

pose an approximate scaled volume–temperature relationship in

a full range of pressures as

ln ~V 5
1

a01b0
~P

1
1

a11b1
~P1c1

~P
2

~T
3
2 (18)

where the coefficients are fitted for all the species as:

a0 5 210.522 6 0.011, b0 5 20.576 6 0.165, a1 5 0.04349 6

0.000019, b1 5 0.1595 6 0.0003, and c1 5 0.08209 6 0.00332, using

specific volumes calculated by eqs. (1) and (2) for the ranges of

temperatures on Table I and 15–70 MPa pressures. Comparing the

specific volume computed by eq. (18) with the SS results, we

obtained the mean and maximum deviations 0.04% and 0.18%,

respectively. Equation (18) includes five fitting parameters, so it

provides less deviation than the three-parameter SS Theory.

The hole fraction data determined from SS theory were fitted

into the scaling relationship for the h-P-T behavior of polymers

in a full range of pressures and temperatures

h5
1

h01h1
~P

1
~T

h21h3
~P

(19)

where h0 5 28.479 6 0.006, h1 5 222.58 6 0.10, h2 5 0.1660 6

0.0001, and h3 5 0.4682 6 0.0008. The hole fraction, h(T,P) com-

puted from eq. (19) using all the species shows mean and maxi-

mum deviation of 0.10% and 0.48%, respectively, from the SS

Theory.

The Shear Viscosity Calculations

The experimental rheological data for the polymers studied

were reported by Sedlacek et al.3,24 for three tested temperatures

and six pressures (0.1, 10, 20, 35, 50, and 70 MPa). Now, these

sets of data are fitted for each polymer using eqs. (8) and (11)

with the double and single non-vanishing term(s) in the

denominator, respectively, to obtain the zero shear viscosities,

g0, and the shear-stress parameters, s, along with the fraction q

as a nonlinearity parameter in the power of shear-rate. Our

motivation is to obtain g0 and s for each temperature and pres-

sure data set while q is a sole parameter for each polymer. To

obtain g0 and s, we employ nonlinear fit scheme assuming that

q is taken as a disposable quantity. The best q value is adjusted

with the least mean percentage error in viscosity defined as

Dg %ð Þ5100

N

X
i

����12
gi

calc

gi
exp

����: (20)

At atmospheric pressure the viscosity data are given at low

shear-rate (0.1–10 s21) as well as high shear-rate (up to 8500

s21), so these data set can be used to obtain g0 and s as well as

q parameter explained above scheme (PC, PMMA, and PS are

considered at high shear-rate). By fixing q, we can obtain all g0

and s at different pressures other than the ambient pressure

because the viscosity data are available only at high shear-rates

(35–8500 s21). To reduce figure crowding, we demonstrated

only HDPE at Figures 1–4. Logarithmic viscosity versus loga-

rithmic shear-rate is plotted at various temperatures at ambient

pressure in Figure 1 and for various pressures only at 210�C in

Figure 2. Similar plots are obtained for the other polymers

given in Table II. The solid line is drawn by eq. (8) with the

best fit parameters. These parameters at ambient pressure are

collected in Table II with the mean percentage error in viscosity

by eq. (20) and R2 as the correlation coefficient squared. In a

similar manner, the parameters in eq. (11) are also tabulated in

parenthesis in Table II at ambient pressure only. For HDPE, the

mean percentage errors in viscosity at ambient pressure are

2.85, 4.53, and 5.14% for the temperatures 170, 190, and 210�C,

respectively. It drops to about 1% or less at higher pressures;

the exact values are 1.14, 0.80, and 0.73 [3.29, 2.43, 2.03 using

for eq. (11)] for the respective temperatures, as noticed easily in

Figures 1 and 2. The mean percentage errors in viscosity for all

the polymers accounted are less than 5.30% at ambient and

Figure 1. Logarithm of viscosity versus logarithm of shear-rate of HDPE

at atmospheric pressure and various temperatures. Solid lines represent

data fitting by eq. (8). [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]

Figure 2. Logarithm of viscosity versus logarithm of shear-rate of HDPE

at 210�C and various pressures. Solid lines represent data fitting by eq.

(8). [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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4.40% at higher pressures. However, using eq. (11), the mean

percentage errors are less than 3.45% at ambient pressure and

9.89% at higher pressures. Even though the mean percentage

error at ambient pressure decreases slightly according to eq.

(11) except LLDPE and PS, it increases by a factor of almost

two for HDPE, LLDPE and PS and three for PP at higher pres-

sures, hence eq. (11) still reasonably fits the viscosity data.

Thus, eq. (8) at high pressure, eq. (11) at ambient pressure

work fine. Moreover, in Figure 3, the zero shear-rate viscosity

and the shear-stress parameter are plotted as a function of

Figure 3. Zero-shear viscosities, g0, and critical shear-stress parameter, s,

computed by eq. (8), with respect to pressures for HDPE at different tem-

peratures. Solid lines represent linear fitting through the data. [Color fig-

ure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

Figure 4. The logarithm of viscosities versus thermo-occupancy function

Yh for HDPE (a) at the zero shear and the constant shear-rates ( _cc5 148,

665, 2980 s21), and (b) constant shear-stresses (rc 5 60, 99, 163 kPa).

Solid lines represent linear fitting through each data set by eqs. (9) and

(15) with the parameters tabulated in Tables III–V. [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]

Table II. Rheological Parameters Computed from eqs. (8) and (11) in Parenthesis in Terms of Three Different Temperatures at Ambient Pressure

Polymer T(�C) q g0 (Pa s) s(Pa) Dg (%) R2

LDPE 150 0.531 (0.614) 2522.68 (2394.74) 3334.2 (2443.7) 3.49 (1.90) 0.99932 (0.99959)

170 1424.26 (1362.49) 4170.5 (3020.1) 5.41 (3.15) 0.99794 (0.99893)

190 837.743 (804.405) 3654.5 (2627.6) 5.60 (3.99) 0.99752 (0.99863)

LLDPE 150 0.540 (0.615) 1216.96 (1190.66) 15870.5 (10490.3) 2.45 (3.31) 0.99907 (0.99934)

170 785.803 (770.735) 16967.3 (11139.7) 2.85 (3.06) 0.99830 (0.99874)

190 553.174 (542.731) 14529.5 (9498.1) 3.52 (3.97) 0.99910 (0.99912)

HDPE 170 0.540 (0.625) 3992.81 (3859.32) 15398.7 (10086.8) 2.85 (2.36) 0.99930 (0.99965)

190 3342.51 (3231.93) 13041.0 (8528.7) 4.53 (3.14) 0.99880 (0.99930)

210 2620.53 (2536.59) 12148.1 (7935.1) 5.14 (4.28) 0.99835 (0.99893)

PMMA 230 0.537 (0.854) 24751.7 (8045.98) 7293.2 (3828.3) 4.37 (0.86) 0.99991 (0.99992)

240 9391.97 (3570.63) 7673.7 (3703.6) 1.46 (2.37) 0.99997 (0.99975)

250 3686.98 (1722.57) 8310.9 (3492.0) 5.70 (1.95) 0.99968 (0.99991)

PC 280 0.532 (0.537) 108.089 (108.355) 91652.8 (84144.8) 1.95 (1.91) 0.99931 (0.99931)

290 94.432 (94.729) 56898.1 (52057.5) 0.44 (0.41) 0.99997 (0.99998)

300 84.081 (85.399) 18894.9 (16425.3) 1.94 (2.11) 0.99953 (0.99945)

PP 190 0.557 (0.684) 2082.62 (1947.16) 3845.5 (1988) 4.34 (2.01) 0.99955 (0.99998)

210 1515.34 (1422.46) 3815.1 (1965.8) 4.42 (2.41) 0.99899 (0.99975)

230 1076.46 (1014.55) 3522.0 (1804.6) 7.14 (4.45) 0.99646 (0.99838)

PS 190 0.447 (0.759) 26304.64 (7085.02) 955.162 (1654.0) 5.36 (3.27) 0.99949 (0.99967)

210 5899.28 (1442.18) 1150.8 (2092.6) 1.90 (2.54) 0.99985 (0.99991)

230 2892.69 (752.878) 1048.2 (1836.1) 0.80 (1.33) 0.99996 (0.99990)
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pressure at various temperatures for HDPE. For the zero shear

viscosity graph, it is included the best fit line. The zero shear

viscosity increases linearly with increasing pressure, but the

shear-stress parameter, depending on pressure in terms of T/t,

increases but not consistently in temperature. On the other

hand, the zero shear viscosity decreases steadily with increasing

temperature, but we may not draw an exact temperature

dependency on the shear-stress parameter.

Free Volume Relation of Viscosities Under Zero Shear,

Constant Shear-Stress, and Constant Shear-Rate

Correlation can be made between hole fraction and viscosities

at constant shear-stress and constant shear-rate given in eqs.

(13) and (14) obtained from the viscosity data in terms of

shear-rate and shear-stress. First, shear viscosity is fitted with

respect to shear-stress by a fourth order polynomial equation

and then the interpolating gr values are calculated at certain

constant shear-stresses, rc (say, 36, 60, 99 kPa for PP, LLDPE,

LDPE; 60, 99, 163 kPa for HDPE; 89 kPa for PS and PC; 163

and 243 kPa for PMMA) at the three tested temperatures and

six pressures. Similarly, the constant shear-rate viscosities, g _c ,

are calculated at certain constant shear-rates, _cc (say 148, 665

and 2980 s21 for all polymers) at the three tested temperatures

and various pressures.

The relations for the calculated zero shear given by eq. (9), the

constant shear-rate and the constant shear-stress viscosities

given by eq. (15) are tested in terms of hole fraction computed

from the SS theory discussed above. In Figure 4, the logarithms

of zero-shear, constant shear-rate and the constant shear-stress

viscosities are plotted with respect to the thermo-occupancy

function, Yh, for HDPE and the solid lines are drawn through

the data with the best fit line. A good linearization for three dif-

ferent viscosity schemes for each polymer is obtained for the

three tested temperatures and all the given pressures. In the fig-

ure for each temperature the pressure increases from the lower

part (left) to the higher part (right) along each line and the

data at lower part of each line is higher in temperature than the

one at upper part. As the hole fraction decreases, Yh increases

for each temperature, so the viscosity increases. Each line slope

gives the value of a as a measure of activation energy, evident

from eqs. (9) and (10). It is actually related with the activation

energy coefficient, a0, and the total interaction energy, qzU,

given by eq. (10). The former is expected to change with shear-

rate and shear-stress, but the latter with each polymer. The

interaction potential energy between a pair of segments, U, is

assumed to be not much varying function in terms of tempera-

ture and pressure so that it is taken to be an average value given

in Table I.

At the constant shear-rates from Figure 4(a), the line slopes

of 96.8, 66.6, 47.8, and 14.6 decrease with the corresponding

shear-rates of 0, 148, 665, 2980 s21, respectively. This can be

due that as the shear-rate increases, the flowability increases

and a, a measure of the activation energy, decreases as seen

in Figure 5(a) for all the polymers mentioned. Using eq. (10),

the activation energy coefficient, a0, is calculated for each

polymer given in Table V and is plotted in Figure 5(b) except

PC and PMMA. It decreases as the shear-rate increases for

each polymer while a0 values for each polymer are close each

other.

As it could be seen in Figure 4(b), the lines at the constant

shear-stresses are almost parallel for HDPE and the values of a
for the polymers given in Table IV plotted in Figure 6(a) are

nearly independent of shear-stress. The activation energy coeffi-

cient, a0, is calculated for each polymer and for polyolefins it is

Table III. Values of Parameters of eq. (9) Evaluated for g0 at Zero Shear Rate According to eq. (8) (The Values Listed in Brackets are According to eq.

(11)

Polymer lng* a a’ (3104) j Dg% R2

LDPE 3.92 (2.55) 113.16 (157.36) 0.22 (0.31) 0.08 (0.31) 0.95 (1.62) 0.99987 (0.99963)

LLDPE 4.59 (4.52) 69.44 (70.37) 0.19 (0.19) 0.04 (0.04) 0.64 (0.71) 0.99993 (0.99991)

HDPE 6.22 (5.98) 96.82 (107.90) 0.16 (0.18) 0.01 (0.01) 0.83 (0.92) 0.99987 (0.99985)

PMMA 1.33 (1.23) 526.6 (467.9) 0.78 (0.70) 1.49 (1.65) 1.91 (1.60) 0.99941 (0.99958)

PC 22.91 (23.22) 672.73 (699.87) 7.16 (7.44) 92 (125.7) 3.60 (3.73) 0.99819 (0.99804)

PP 3.82 (1.85) 201.43 (312.76) 0.19 (0.29) 0.09 (0.61) 2.27 (3.94) 0.99929 (0.99768)

PS 2.17 (0.94) 346.95 (339.22) 0.22 (0.22) 0.51 (1.73) 2.53 (3.08) 0.99885 (0.99835)

Figure 5. The shear-rate dependency of computed a and a0 parameters for

the polymers in Table I calculated by eqs. (10) and (15). [Color figure can

be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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plotted in Figure 6(b). Obviously, it stays almost constant for

these depicted polymers. Figure 6 is drawn with the exception

of PMMA, PC and PS. PMMA has larger values of a and a0

comparing with the others while there is only limited levels of

shear-stress available for PS and PC. From Figure 4, we can

conclude that the logarithm of viscosities decreases as the

constant shear-stress increases, as well as the constant shear-

rate.

For all the polymers, the best fit parameters obtained from eqs.

(9) and (15) are given in Tables III–V with the correlation coef-

ficient and the mean percentage error in viscosities from eq.

(20). As given in Table III, the mean percentage errors in zero

Table V. Values of Parameters of eq. (15) Evaluated for g_c at Different Shear Rates

Polymer _cc s21
� �

lng* a a’ (3104) j Dg% R2

LDPE 148 3.86 58.2 0.11 0.08 4.19 0.99990

665 3.46 45.1 0.09 0.12 4.74 0.99987

2980 2.77 37.6 0.07 0.24 4.64 0.99980

LLDPE 148 4.35 49.8 0.13 0.05 3.76 0.99994

665 4.10 38.2 0.10 0.06 3.67 0.99993

2980 3.58 26.4 0.07 0.11 2.10 0.99997

HDPE 148 5.37 66.6 0.11 0.02 2.18 0.99998

665 4.93 47.8 0.08 0.03 2.19 0.99998

2980 4.50 14.6 0.02 0.05 5.83 0.99975

PMMA 148 3.35 225.6 0.34 0.20 4.66 0.99993

665 3.06 174.1 0.26 0.27 2.43 0.99997

2980 2.30 143.0 0.21 0.57 2.23 0.99996

PC 148 22.02 570.0 6.07 37.71 14.84 0.99891

665 21.88 540.0 5.74 32.96 15.08 0.99874

2980 21.20 437.9 4.66 16.60 13.40 0.99880

PP 148 3.59 114.1 0.11 0.11 4.49 0.99991

665 3.22 83.8 0.08 0.16 4.09 0.99989

2980 2.47 64.8 0.06 0.33 5.12 0.99974

PS 148 2.64 159.6 0.10 0.32 3.59 0.99995

665 2.18 131.9 0.08 0.50 4.34 0.99988

2980 1.25 121.2 0.08 1.28 4.23 0.99982

Table IV. Values of Parameters of eq. (15) Evaluated for gr at Different Shear Stresses

Polymer rc (kPa) lng* a a’ (3104) j Dg% R2

LDPE 36 2.43 110.16 0.22 0.35 1.56 0.99954

60 1.64 119.63 0.23 0.76 1.30 0.99971

99 1.15 113.61 0.22 1.24 2.12 0.99936

LLDPE 36 3.83 71.77 0.19 0.08 0.78 0.99902

60 3.53 74.49 0.20 0.11 0.82 0.99990

99 3.15 77.15 0.21 0.17 1.08 0.99984

HDPE 60 4.66 127.24 0.21 0.04 0.53 0.99996

99 4.46 120.27 0.20 0.05 0.50 0.99996

163 3.88 127.21 0.21 0.09 0.56 0.99996

PMMA 163 24.55 716.81 1.07 532.3 1.47 0.99966

243 29.40 934.18 1.39 68334.5 3.89 0.99817

PC 89 24.11 713.32 7.59 304.69 5.42 0.99591

PP 36 1.28 253.50 0.24 1.08 1.40 0.99969

60 0.45 263.44 0.25 2.49 1.77 0.99942

99 21.13 288.91 0.27 11.9 3.85 0.99788

PS 89 25.12 485.49 0.31 745.8 4.89 0.99728
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shear viscosity computed by eqs. (8) and (11) range from 0.64

to 3.60 and 0.71 to 3.94, respectively. Similarly, the mean per-

centage errors in constant shear-stress and constant shear-rate

viscosities are also calculated between 0.50 and 5.42 given in

Table IV and 2.10 and 15.08 given in Table V, respectively.

Besides, the transmission coefficient, j, in eq. (10) is also calcu-

lated and plotted in Figures 7(a) and 8(a) with respect to the

shear-rate and the shear-stress, respectively. It has been found

that the transmission coefficient, j, increases linearly with the

increasing shear-rate and shear-stress, yielding the molecules to

jump into the holes much easily. On the other hand, the tend-

ency of the molecules to the flowability decreases the intercepts,

lng*, at the viscosity axis, that represents the extrapolated vis-

cosity values when the system dominates sufficiently large hole

fraction expectedly at high temperature and low pressure in eq.

(15). In other words, the thermo-occupancy function, Yh, goes

to zero. This contrary behavior of j to lng* is obvious from

Tables IV and V. Graphical results of this observation are

depicted in Figures 7 and 8. Increasing the constant shear-

stress given in Table IV, and the constant shear-rate given in

Table V, the intercepts for HDPE decrease steadily as 4.66,

4.46, 3.88 Pa s and 5.37, 4.93, 4.50 Pa s, respectively. The dec-

rements for the shear-rate and the shear-stress are also

observed for the other polymers shown in Figures 7(b) (except

for PC because of the negative values of ln g*) and 8b (except

for PC and PS having only one computed value for lng*),

respectively. The calculated values of lng* of the constant

shear-stress order of the materials are as follows:

HDPE> LLDPE> LDPE>PP>PC>PS>PMMA. This can

be interpreted such that the polymers, PC, PS, and PMMA,

are bulky and smaller in size with larger pendant groups so

they take the smaller values of lng*. However, the lengthier

structure of HDPE, LLDPE, and LDPE has the larger lng* since

they are crawling with the length of their arms.

As seen from Tables III–V, PMMA, PC, PP, and PS require

more activation energy than LDPE, LLDPE, and HDPE. This

Figure 7. The shear-rate dependency of computed j and ln g� for the

polymers in Table I calculated by eqs. (10) and (15). [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 8. The shear-stress dependency of computed j and ln g� for the

polymers in Table I calculated by eqs. (10) and (15). [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 9. The chain length dependency of computed parameters j and a0

for the polymers in Table I calculated by eqs. (9) and (10).

Figure 6. The shear-stress dependency of computed parameters a and a0

for the polyolefins in Table I calculated by eqs. (10) and (15). [Color fig-

ure can be viewed in the online issue, which is available at wileyonlineli-

brary.com.]
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can be attributed to bulky allyl, methyl, and phenyl groups on

the former structures.

j and a0 are plotted with respect to segmental length of the poly-

mers in Figure 9. They are almost constant for polyolefins and PS.

At the zero shear-rate, the constant shear-rate and the constant

shear-stress, the viscoholibilities given by eqs. (12–14) describe

how the viscosity changes with the hole fraction as a measure

of free volume at a constant temperature. The viscoholibilities

at the given conditions above, divided by the structural related

parameter, 2a, are plotted versus hole fraction for all polymers

given in Figure 10. The parameter, 2a21, just shifts the visco-

holibility in the vertical axis to overlap all the data. As the hole

fraction increases on the horizontal axis, the change in logarith-

mic viscosity with respect to hole fraction decreases, as well. At

low hole fractions, the derivative decreases rapidly with an

increase of the hole fraction since a small rise in hole fraction

causes a significant drop in viscosity. On the other hand, the

viscoholibility does not change significantly when the hole frac-

tion is above 0.11. This indicates the role of the pressure and

temperature-dependent hole fraction in viscosity mechanism.

CONCLUSIONS

In this article, we have developed a model for the non-

Newtonian viscous behavior of polymers using the Eyring

Transport Theory in terms of shearing strain rate. This relation

can potentially delineate a useful tool for fitting pressure and

temperature dependent viscosity data. The characteristic ther-

modynamical parameters, P*, V*, T* and the hole fraction are

obtained by fitting the PVT data to the Simha-Somcynsky EOS.

Equations (9) and (15) indicates that pressure and temperature

dependent hole fraction effect on zero shear, constant shear-

stress and constant shear-rate viscosities can be estimated from

the evaluation of temperature affected viscosity and PVT char-

acteristics. Using these formulations, any viscosity data can be

predicted using the hole fraction. The logarithmic viscosity in a

broad temperature and pressure range has been achieved with a

reconcilable error.

NOMENCLATURE

a0 Proportionality constant of activation energy

ai, ai
0 Numerical parameters in eqs. (17) and (18)

bi, c1 Numerical parameters in eq. (18)

3c Total external degrees of freedom

Ea Activation energy (J)

r Shear stress (N/m2)

rc Constant shear-stress (N/m2)

hp Planck constant ð6:626310234 J :sÞ
h Hole fraction

hi Numerical parameters in eq. (19)

k Boltzmann’s constant ð1:38310223 J=KÞ
k0 Jumping rate of a segment

ki Jumping rate of ith segment

m0 Segmental molar mass of molecules (kg)

NA Avogadro’s number
~P ; ~V ; ~T Reduced pressure, volume, temperature

P*, V*, T* Characteristic pressure, volume, temperature

Q Hole fraction and reduced volume dependent

quantity in eq. (2)

q Nonlinearity parameter in the power of shear-rate

qz Number of interchain nearest neighbor pairs in a

lattice of coordination number

R Gas constant (8.314 J/mol K)

r� Segmental location of the potential minimum

s Number of segments of molecules

si Number of segments of ith molecules

_c Shear-rate (s21)

_cc Constant shear-rate (s21)

_c0 Zero shear-rate (s21)

T Temperature (˚C or K)

t Molar segmental volume

t* Characteristic molar volume of a segment

y Occupied site fraction

Yh “Thermo-occupancy function,” in eqs. (9) and (15)

z Coordination number

GREEK LETTERS

a Slope of eqs. (9) and (15)

ni Displacement volume of ith segment

Dg Average percentage error in viscosity

e Attraction energy of a segment (k.K)

e* Attractive interaction parameter of a segment of the

potential minimum

g* Intercept of eqs. (9) and (15)

g0, g _c , gr Zero shear viscosity, constant shear-rate viscosity

and constant shear-stress viscosity (Pa s)

k The distance between two successive equilibrium

positions

hi The angle between the shear-stress and the dis-

placement vector of ith contiguity of a segment

j Transmission coefficient

Figure 10. The derivative of logarithm of zero shear, constant shear-rate

and constant shear-stress viscosities with respect to hole fraction at con-

stant T for all polymers. Solid line represents the best fit curve through

the data. [Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com.]
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k Distance between two successive equilibrium posi-

tions (m)

k1 A relative displacement of adjacent layers

k2k3 Surface area occupied by a segment

U Mean interaction potential energy between a pair of

segments (k.K)

s Critical shear-stress parameter
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